New Flight Opportunity for School Districts: Announcing Student Spaceflight Experiment Program (SSEP) Mission 9 to the International Space Station for 2015-16 Academic Year

Opportunity for Schools to Engage Grade 5-16 Students in the Design of Microgravity Experiments for Flight to the International Space Station

STEM Project-Based Learning Through Immersion in an Authentic Research Experience

For Immediate Release
March 20, 2015
If you have a PDF of this document, for active links, go to: http://ssep.ncesse.org/?p=18964

Time Critical: interested schools are directed to inquire about the program no later than April 30, 2015

Washington, D.C. - The National Center for Earth and Space Science Education (NCESSE), and the Arthur C. Clarke Institute for Space Education, in partnership with NanoRacks LLC, announce a new opportunity for school districts across the U.S., Canada, and internationally to participate in the eleventh flight opportunity of the Student Spaceflight Experiments Program (SSEP).

Launched in June 2010, SSEP was designed as a model U.S. National STEM (Science, Technology, Engineering, and Math) education program that immerses typically 300 students across a community in every facet of authentic scientific research of their own design, using a highly captivating spaceflight opportunity on the International Space Station (ISS).

The program is designed to inspire and engage the next generation of scientists and engineers, and is accomplished by providing each participating community their own very real Space Program.

SSEP Mission 9 to ISS will provide each participating community a real research mini-laboratory capable of supporting a single microgravity experiment, and all launch services to fly the mini-lab to ISS in Spring 2016, and return it safely to Earth for harvesting and analysis. Mirroring how professional research is done, student teams across the community submit research proposals, and go through a formal proposal review process to select the flight experiment. The design competition – from program start, to experiment design, to submission of proposals by student teams – spans 9 weeks from September 7 to November 6, 2015. A curriculum and content resources for teachers and students support foundational instruction on science conducted in microgravity (in a weightless environment) and experiment design. Additional SSEP program elements leverage the experience to engage the entire community, embracing a Learning Community Model for STEM education.

SSEP provides seamless integration across STEM disciplines through an authentic, high visibility research experience—an approach that embraces the Next Generation Science Standards. For school districts—even individual schools—SSEP provides an opportunity to implement a systemic, high caliber STEM education program tailored to community need. More broadly, SSEP is about a commitment to student ownership in exploration, to science as journey, and to the joys of learning.

SSEP is open to U.S. schools and school districts serving grade 5 through 12 students, 2- and 4-year colleges and universities, informal science education organizations, and internationally through the Center’s Arthur C.
SSEP is not designed for an individual class or a small number of students in a community. Student teams are able to design experiments across diverse fields, including: seed germination, crystal growth, physiology and life cycles of microorganisms, cell biology and growth, food studies, and studies of micro-aquatic life. Experiments require design to the technology and engineering constraints imposed by the mini-laboratory, and flight operations to and from low Earth orbit.

“SSEP is designed to empower the student as scientist, and within the real-world context of science. Student teams design a real experiment, propose for a real flight opportunity, experience a formal proposal review, and go through a NASA flight safety review. They even have their own science conference at the Smithsonian National Air and Space Museum, where they are immersed in their own community of researchers”, said Dr. Jeff Goldstein, creator of SSEP and NCESSE Center Director. “SSEP is about introducing real science to our children and if you give them a chance to be scientists, stand back and be amazed.”

SSEP Mission 9 to ISS includes an experiment design competition September 7 through November 6, 2015. Flight experiments are selected by December 17, 2015, for a ferry flight to ISS in Spring 2016. All communities interested in participating in Mission 9 to ISS are directed to inquire no later than April 30, 2015.

Heritage: There have been ten SSEP flight opportunities to date—SSEP on STS-134 and STS-135, the final flights of Space Shuttles Endeavour and Atlantis; and SSEP Missions 1 through 8 to ISS. A total of 110 communities have participated in the program, reflecting 35 States in the U. S. and 4 Provinces in Canada. Thus far 25 communities have participated in 2, 3, 4, 5 or 6 flight opportunities, reflecting the sustainable nature of the program.

Through the first nine flight opportunities, a total of 45,970 grade 5-15 students were fully immersed in microgravity experiment design and proposal writing, 10,443 flight experiment proposals were received from student teams, and 138 experiments were selected for flight. A total of 113 experiments have flown through SSEP Mission 6.

Currently the 25 experiments of the Mission 7 to ISS Kitty Hawk payload are awaiting transport to ISS, with launch expected in June 2015 on the SpaceX-7 vehicle launching from Cape Canaveral Air Force Station, Florida, adjoining NASA Kennedy Space Center.

SSEP is the first pre-college STEM education program that is both a U.S. national initiative and implemented as an on-orbit commercial space venture. SSEP is undertaken by the National Center for Earth and Space Science Education (NCESSE) in the U.S. and the Arthur C. Clarke Institute for Space Education internationally. It is enabled through a strategic partnership with NanoRacks LLC, working with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

The Smithsonian National Air and Space Museum, Center for the Advancement of Science in Space (CASIS), and Subaru of America, Inc., are U.S. National Partners on the Student Spaceflight Experiments Program. Magellan Aerospace is a Canadian National Partner on the Student Spaceflight Experiments Program.

For information on the Mission 9 to ISS flight opportunity, and to get a detailed understanding of the program, read the SSEP Home Page: http://ssep.ncesse.org

About NCESSE
The National Center for Earth and Space Science Education (NCESSE) creates and oversees national initiatives addressing science, technology, engineering, and mathematics (STEM) education, with a focus on earth and space. Programs are designed to provide an authentic window on science as a human endeavor. Central objectives of the Center’s programs are to help ensure a scientifically literate public and a next generation of
U.S. scientists and engineers - both of which are of national importance in an age of high technology. NCESSE is a Project of the Tides Center. http://ncesse.org

About Arthur C. Clarke Institute for Space Education
The Arthur C. Clarke Institute for Space Education is dedicated to delivering education programs world-wide that address our planet, its health, and our ability to venture beyond Earth and understand our place in a greater cosmos. The international arm of the NCESSE in the U.S., the Institute recognizes that all humanity is on a journey aboard spaceship Earth, that the story of our existence knows no national borders, and it should be the birthright for all our children to understand that the explorer lives within them. It is with profound honor and a deep sense of purpose that we continue Sir Arthur C. Clarke’s legacy. http://clarkeinstitute.org

About NanoRacks, LLC
NanoRacks LLC was formed in 2009 to provide quality hardware and services for the U.S. National Laboratory (USNL) onboard the International Space Station. NanoRacks has two research platforms on the USNL that can house plug and play payloads using the Cube-Sat form factor. The current signed customer pipeline includes over 50 payloads from domestic and international educational institutions, research organizations and government organizations, propelling NanoRacks into a leadership position in the emerging commercial market for low-earth orbit utilization. Visit www.nanoracks.com and @nanoracks on Twitter

Media Contact: Dr. Jeff Goldstein, Center Director, NCESSE, 301-395-0770, jeffgoldstein@ncesse.org