Our Selected Flight Experiment

Physiological effects of microgravity on germination and growth of Arabidopsis thaliana
Grades 9-12, Henry E. Lackey High School
Co-Principal Investigators: Courtney Buckman, Charles Campbell, Kristin Conyers, Devon Johnson, Chinyere McKoy-Nwachukwu, Christine Kim, Sam Paras, Sydney Scott, Paul Warren, and Deborah Cline
Teacher Facilitators: Lara North and Romulo Gabriel, Science Teachers

Proposal Summary:
The experiment detailed herein investigates the effect of microgravity on the growth of plant structures during seed germination. The team believes plant growth in a microgravity environment will result in significant changes to the majority of plant structures of the Arabidopsis thaliana model organism. The set of seeds exposed to a microgravity environment will be compared to a set of seeds grown on Earth as a control group. The comparison tool that will be used is a scanning electron microscope. The main focus of this experiment will be on the vascular tissues and the root systems of the models. However, all plant structures will be studied. A. thaliana, a small flowering plant, is widely used as a model organism in plant biology. It was the first plant to have its entire genome sequenced. If this mission is successful, individual genes of the wild type A. thaliana could then be mutated in order to determine the specific effect of microgravity on expression of individual gene sequences. Because A. thaliana has been extensively experimented with, a pattern could emerge when examining the relationship between mutated seeds germinated in space and mutated seeds germinated on Earth.

Comments are closed.