A Model U.S. National STEM Education Initiative for Grades 5-16
to inspire the next generation
of America’s scientists and engineers

Go to 10/2/15 Announcement)
Experiment Design Phase: Winter/Spring 2016; Flight to ISS: Fall 2016     Download: Press Release PDF
Download: 3-page Program Overview for Mission 10 (MS Word)
Watch Video Clips describing SSEP: Clip 1 (NASA), Clip 2 (NASA)   
Scientific American feature article on SSEP: February 17, 2015
Download: 2-page SSEP Overview used for Congressional Briefings (PDF)

Breaking News from the SSEP National Blog
Subscribe to the Blog to receive email notification of breaking SSEP News. Use the Subscribe Box at the bottom of the right column.

For all recent news, Jump to the SSEP National Blogor visit the full SSEP News Archive

Multimedia (click on toggle below)

ISS Current Location

The ISS Current Location tracker above was developed by the European Space Agency (ESA). ESA’s Columbus laboratory is a component of the ISS. Visit the ESA website for more information on the tracker.

HDEV Live View of Earth from ISS

If the image is black, ISS is on the night side of Earth. To check, use the ‘ISS Current Location’ above. Note: ISS orbits Earth in 90 minutes, with 45 minutes of daylight followed by 45 minutes of darkness.

This high definition video of your world is being telemetered to Earth LIVE from the International Space Station. To determine what portion of Earth is in view, use the ‘ISS Current Location’ toggle above. We invite you to get into the spirit of exploration on the frontiers of space – select an audio file below, expand the HDEV video window, and look down from 250 miles above Earth’s surface. Suggestions for other audio tracks are welcome:)

David Bowie’s Space Oddity, sung by Canadian Astronaut Chris Hadfield on ISS (watch his video)


Star Trek TNG

About HDEV, from NASA: The High Definition Earth Viewing (HDEV) experiment aboard the ISS was activated April 30, 2014. It is mounted on the External Payload Facility of the European Space Agency’s Columbus module. HDEV includes four fixed cameras positioned to capture imagery of the Earth’s surface and its limb as seen from the ISS – one camera pointing in the direction the station is moving, two cameras aft (wake), and one camera pointing straight down at Earth (nadir). While the experiment is operational, views will typically sequence though the different cameras. Between camera switches, a gray and then black color slate will briefly appear. To learn more about the HDEV experiment, visit this NASA webpage.

Twitter Feed with Images from Astronauts Currently Aboard ISS



SSEP Executive Summary

A careful read of this home page will provide an Executive Summary of the Program. The rest of this website provides a deeper understanding of program pedagogy and operations; guidance for how a community can come aboard; and resources to conduct the program.

The Student Spaceflight Experiments Program (SSEP) was launched in June 2010 by the National Center for Earth and Space Science Education (NCESSE) in strategic partnership with NanoRacks, LLC. Designed as a model U.S. national Science, Technology, Engineering, and Mathematics (STEM) education initiative, the program gives typically 300+ students across a participating community the ability to design and propose real microgravity experiments to fly in low Earth orbit (experiments conducted in a “weightless” environment), first aboard the final flights of the Space Shuttle in 2011, and then on the International Space Station (ISS) – America’s newest National Laboratory. SSEP is suitable for students in pre-college grades 5-12, 2-year community colleges, and 4-year colleges and universities.

In 2012, SSEP was extended to international communities through the Arthur C. Clarke Institute for Space Education, NCESSE’s new international arm.

Endeavour (STS-134) docked to the International Space Station

Click on the image and feel the magic. Shuttle Endeavour on its final flight (STS-134) docked at ISS, May 23, 2011. Aboard her are 16 SSEP Experiments. Read more at nasa.gov

SSEP is about immersing and engaging
students and their teachers in every facet
of real science—on the high frontier—so
that students are given the chance to be
scientists—and experience science firsthand.

More broadly, SSEP is about a commitment to student ownership in exploration, to science as journey, and to the joys of learning.

Of special note – SSEP is garnering significant media coverage at local, regional, and national levels. School districts are powerfully leveraging media exposure for their participation in this high caliber STEM initiative, and at a time when STEM education is of national strategic importance, and is becoming a core element of the curriculum at the local level (see the SSEP in the News pages, and e.g., a recent Scientific American feature article).

Important note: SSEP is not designed for an individual class or a small number of students in a community. Implementing SSEP for an appropriate-sized student audience is straightforward, and implementation plans for a large number of participating communities are available for review.

Program Overview

Each community participating in SSEP is provided a very real research asset – a flight certified, straightforward to use microgravity research mini-laboratory, and guaranteed launch services to transport the mini-laboratory to the International Space Station (ISS). It is a precious and limited research asset given that the mini-laboratory can only contain a single student team designed microgravity experiment. An astronaut aboard ISS will conduct the experiment, and after a typical 4 to 6 week stay in orbit, the experiment will be returned safely to Earth for harvesting and analysis by the community’s student flight team.

Mirroring how professional researchers formally compete to obtain limited research assets, the participating community carries out a “call for proposals”. More specifically, the community conducts a local Flight Experiment Design Competition, engaging hundreds of students in teams of typically 3-5, with each team vying for the community’s single experiment slot by proposing a microgravity research program that can be carried out in the mini-laboratory. The competition is conducted through formal submission of real (but grade level appropriate) research proposals by the student teams – as is standard practice for professional researchers. A minimum of 50-80 flight experiment proposals are typically secured across a single community.

Each community’s flight experiment is selected through a formal 2-step proposal review process. The final selection is carried out by the SSEP National Step 2 Review Board, which meets at the Smithsonian National Air and Space Museum in Washington, DC. The flight experiment then undergoes a 4-month NASA flight safety review at Johnson Space Center, laboratory refinement by the student flight team, handover to NanoRacks in Houston for integration into the experiments payload, and payload integration into the ferry vehicle for flight to ISS. SSEP experiment payloads launch from either Cape Canaveral Air Force Station, Florida, on a SpaceX Dragon spacecraft, or from the Mid-Atlantic Regional Spaceport (MARS), Wallops Island, Virginia, on an Orbital Sciences Cygnus spacecraft.

SSEP is not a simulation – this is very real spaceflight. This is very real student immersion in space science research, and a remarkable opportunity for a community.

Stated more powerfully —

SSEP provides each community its own – very real – Space Program.

An annual SSEP National Conference held at the Smithsonian National Air and Space Museum in Washington, DC, immerses delegations of students in a real research conference where they formally present to their peers on experiment design and science results (explore the 2015 Conference page, and video clips of presentations archived on the Scientific Return and Reporting pages, see e.g.Mission 5 to ISS Scientific Return and Reporting).

A suite of SSEP program elements—the Community Program—leverages the flight experiment design competition to engage the entire community, embracing a Learning Community Model for STEM education. One element is a Mission Patch art and design competition allowing hundreds of students across the community (down to grade K) to capture through art and design their community’s SSEP experience. Up to two Mission Patches accompany the community’s selected flight experiment to low Earth orbit.

Strategic Curricular Connections to Science and STEM

Students can design experiments in diverse fields, including: seed germination, crystal growth, micro-encapsulation, chemical processes, physiology and life cycles of microorganisms (e.g. bacteria), cell biology and growth, food studies, and studies of micro-aquatic life. SSEP is therefore relevant across all science disciplines, and allows all teachers of science across a community to immerse students in a fully authentic process of scientific inquiry. A curriculum, and other resources for teachers and students, supports foundational instruction on both the cause and characteristics of a microgravity (weightlessness) environment; the science conducted in microgravity and why; guidance for proposal writing; and the experiment design process that flows from the key essential question–

The essential question driving experiment design:
What physical, chemical, or biological system would I like to explore with gravity seemingly turned off for a period of time, as a means of assessing the role of gravity in that system?

SSEP provides seamless integration across STEM disciplines through an authentic, high visibility research experience that correctly places content within a process landscape – an approach that embraces the Next Generation Science Standards, but also requires –

  • a critical understanding of the space technology, and associated spaceflight operations, used to transport payload to and from Low Earth Orbit and conduct microgravity experiments on ISS,
  • a critical understanding of the engineering specifications for the mini-laboratory, which provide real-world constraints on experiment design,
  • mathematics to design a viable experiment to operate in the mini-laboratory, through: refinement of sample (fluid and solid) concentrations and volumes, defining a timeline that is consistent with the experiment’s duration aboard ISS, and defining an approach to data analysis after the experiment returns to Earth

In addition, student teams are writing real proposals that then go through a formal review process. This addresses vital skills in terms of historical research, critical writing and communications, and teamwork.

Through this authentic trans-disciplinary approach to STEM education, SSEP is designed to inspire and engage the next generation of scientists and engineers, and more generally, address STEM literacy. For school districts—even individual schools—SSEP provides an opportunity to implement a systemic, high caliber STEM education program tailored to community need. With the Mission Patch art and design competitions, SSEP is more appropriately designated a STEAM initiative.

Appropriate Lead Institutions to Conduct this Program

The program is open to 5 categories of community, which provides a great deal of flexibility in implementing SSEP at the local level:

  • Pre-College (the core focus for SSEP) in the U.S., (grades 5-12), with a participating school district—even an individual school—providing a stunning, real, on-orbit RESEARCH opportunity to their upper elementary, middle, and high school students
  • 2-Year Community Colleges in the U.S., (grades 13-14), where the student body is typically from the local community, providing wonderful pathways for community-wide engagement
  • 4-Year Colleges and Universities in the U.S., (grades 13-16), with an emphasis on Minority-Serving Institutions, where the program fosters interdisciplinary collaboration across schools and departments, and an opportunity for formal workforce development for science majors
  • Communities in the U.S. led by Informal Education or Out-of-School Organizations, (e.g., a museum or science center, a home school network, a boy scout troop), because high caliber STEM education programs must be accessible to organizations that promote effective learning beyond the traditional classroom
  • Communities Internationally: in European Space Agency (ESA) member nations, European Union (EU) member nations, Canada, and Japan with participation through NCESSE’s Arthur C. Clarke Institute for Space Education. Communities in other nations should explore the potential for their participation by contacting the Institute.

Flight Opportunities to Date

Since program inception in June 2010, there have been eleven SSEP flight opportunities—SSEP on STS-134 and STS-135, which were the final flights of Space Shuttles Endeavour and Atlantis; and SSEP Missions 1 through 9 to ISS. A total of 124 communities have participated in the program, reflecting 35 States in the U. S. and 4 Provinces in Canada. Thus far 28 communities have participated in multiple flight opportunities – one community starting their 7th with Mission 9 – reflecting the sustainable nature of the program.

Through the first ten flight opportunities, a total of 49,260 grade 5-16 students across 778 schools were fully immersed in microgravity experiment design and proposal writing, 11,151 flight experiment proposals were received from student teams, and 153 experiments were selected for flight. A total of 113 experiments have flown through SSEP Mission 6. Another 40 experiments are expected to launch in Winter 2015/16 – 25 experiments as the Mission 7 Odyssey II payload on SpaceX-8, and 15 experiments as the Mission 8 Kitty Hawk payload on SpaceX-9, both launching from Cape Canaveral Air Force Station, FL, adjoining Kennedy Space Center. Tens of thousands more students across the entire grade K-16 pipeline were engaged in their communities’ broader STEAM experience, submitting 42,647 Mission Patch designs.

For more information on SSEP Missions to date–

Explore the Flight Opportunities to Date page, which provides launch and landing dates, and information on the ferry spacecraft, astronaut crews aboard ISS during experiment operation, and the SSEP flight experiment payloads.

Explore the separate SSEP website – the SSEP Community Network Hubsite – which is dedicated to the participating communities and the over 650 organizational partners at the local level. At the Hubsite, you can read profiles of the participating communities, see a map of the Community Network, read about the selected flight experiments and flight Mission Patches, explore the many hundreds of media articles on SSEP, and watch videos of student teams reporting out at the SSEP National Conferences in Washington, DC.

NEW Flight Opportunity

October 2, 2015: Announcing SSEP Mission 10 to the International Space Station (ISS)

The National Center for Earth and Space Science Education, and the Arthur C. Clarke Institute for Space Education announce the twelfth SSEP flight opportunity – SSEP Mission 10 to ISS – which provides for an experiment design competition Winter/Spring 2016, and a ferry flight of the selected flight experiments to ISS in Fall 2016. SSEP Mission 10 to ISS is currently the only SSEP flight opportunity available.

Time Available for Experiment Design:
Your Student Teams, led by your designated SSEP Local Team of Teacher Facilitators, will have 9 weeks from program start to proposal submission: February 22 to April 22, 2016. During this time, core activities include:

  • introducing SSEP curricular content for foundational instruction on: the nature of microgravity, science conducted in microgravity, mini-laboratory operation, and experimental design
  • defining student teaming, and facilitation of microgravity experiment design across all student teams
  • each team writing a formal 5-page, grade level appropriate flight experiment proposal

Key Milestones:

  • Experiment Design and Proposal Writing (9 weeks): February 22 – April 22, 2016
  • Flight Experiment Proposals due to your lead institution: April 22, 2016
  • Local Step 1 Review Board selects 3 finalist proposals, submits to NCESSE: May 4, 2016
  • Formal selection of your community’s flight experiment: May 26, 2016
  • Ferry Flight of SSEP Payload to ISS, estimated launch date: Fall 2016
  • Ferry Flight of SSEP Payload back to Earth: aim is for Launch Plus 4-6 weeks, but can be longer
  • SSEP National Conference for students: early July 2016 and 2017, most likely held at the Smithsonian National Air and Space Museum, Washington, DC, the site of the 2011 through 2015 Conferences

Letters of Commitment of Funding from Participating Communities: due February 15, 2016
Mission 10 to ISS Starts in Participating Communities: February 22, 2016

ASAP: Interested communities are directed to contact NCESSE as soon as possible, but before November 13, 2015, to explore participation. It typically takes 3-4 months in advance of  program start to plan and fund the program in a community (funding with assistance from NCESSE if required – see below). 

Program Basics

SSEP provides significant flexibility for a community to design a program to their strategic needs in STEM education—

  • A community of any size can participate, including a small school district, an individual school, a large inner city or suburban district, a cluster of rural districts, a college, or a museum/science center or other informal education led community-based effort
  • The baseline SSEP program provides for typically 300+ students participating in the Experiment Design Competition in each community
  • A community can open the competition to any grade level(s) in the grade 5-16 range, and through the provided elements of the SSEP Community Program, engage wider audiences (all grade levels, families, and the general public). The Community Program includes: a competition to design a Mission Patch to fly in space with your flight experiment, and a SSEP National Conference in Washington, DC. The Community Program also provides the means for a National Team of scientists and engineers to travel to your community for up to a week, and engage thousands of grade K-16 students—one classroom at a time; conduct family and public programs like those the Center conducts at the National Air and Space Museum; and provide professional development for grade K-12 teachers.
  • SSEP is a bold new commercial space venture in partnership with NanoRacks LLC. The National Center for Earth and Space Science Education, a 501(c)(3) non-profit, must recover the actual costs for the program (lease of commercial space for the mini-laboratory in the flight payload and aboard ISS, all flight services to and from low Earth orbit, program delivery and community support), but also recognizes the significant challenge to a community in securing underwriting in the current financial climate. That said, the Center is committed to trying to find funding for any community in the U.S. and Canada interested in participating. The Center found full or partial funding for 142 of the 171 SSEP community programs undertaken as part of the first 11 SSEP flight opportunities, and we now have active relationships with a national network of a few hundred funders. If you are interested in this program, let us help.

Strategic, National, and Local Partners, and Event Sponsors

The Student Spaceflight Experiments Program (SSEP) is undertaken by the National Center for Earth and Space Science Education (NCESSE) in the U.S., and the Arthur C. Clarke Institute for Space Education internationally. SSEP is enabled through NanoRacks LLC, which is working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory. NCESSE, the Clarke Institute, and NanoRacks are therefore designated SSEP Strategic Partners.  Visit the Strategic Partners page to read about their SSEP programmatic roles and responsibilities.

SSEP is the first pre-college STEM education program that is both a U.S. national initiative and implemented as an on-orbit commercial space venture. 

NCESSE and the Clarke Institute are proud to be working with the following National Partners on SSEP — in the U.S., the Smithsonian National Air and Space Museum, the Center for the Advancement of Science in Space (CASIS), and Subaru of America, Inc., and in Canada, Magellan Aerospace. To read more about these partnerships, visit the National Partners and Sponsors page.

Underwriting by Conference and Event Sponsors make events for the SSEP community network possible. Read more at the National Partners and Sponsors page.

Partnership is truly a hallmark of SSEP. Over 650 organizations have supported SSEP at the local level, including: school districts, private schools, NASA Space Grant lead institutions and other universities, corporate foundations, businesses, community foundations, and local research institutions. These organizations are designated the SSEP Local Partners. To explore the Local Partners, visit the Communities & Local Partners page at the Community Network Hubsite.


SSEP was designed to be a keystone initiative for U.S. National STEM education, and to help inspire America’s next generation of scientists and engineers. Through the Arthur C. Clarke Institute for Space Education, the International arm of the National Center for Earth and Space Science Education, SSEP participation is also being expanded internationally to reflect the multinational complexion of ISS operations.

We want SSEP to provide routine student researcher access to space via commercial payloads, to leverage the power of such access into a STEM education program delivered at the local level across an entire community, and to serve a network of such communities across the nation—even internationally.

Phase 1 of the program was a unique and historic opportunity for students to propose experiments to fly aboard STS-134 and STS-135, the final flights of the Space Shuttle. We wanted the final voyages of the Space Shuttle to also mark a new beginning for private sector sponsored student experiments in space. Phase 2 of the Student Spaceflight Experiments Program, launched June 2011, provides sustainable, ongoing access to space for communities of grade 5-16 students inspired to propose experiments for low Earth orbit aboard the International Space Station, with transport aboard the NanoRacks manifest of cargo ships after the Space Shuttle era comes to a close.

To our children, who are America’s future in the 21st century—
be part of history … by making history.

To schools and school districts committed to STEM education—
together let’s help your students step into the shoes of scientists and engineers … right now.



INTERESTED? YOUR NEXT STEP: go to the About SSEP page for a comprehensive overview of SSEP, including a description of strategic STEM objectives, program elements, customization to community need, and cost.


All content on this website is Copyright 2015, National Center for Earth and Space Science Education (NCESSE). Any use of this content without the permission of NCESSE is prohibited.

The Student Spaceflight Experiments Program (SSEP) is a program of the National Center for Earth and Space Science Education (NCESSE) in the U.S., and the Arthur C. Clarke Institute for Space Education internationally. It is enabled through a strategic partnership with NanoRacks LLC, working with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory. SSEP is the first pre-college STEM education program that is both a U.S. national initiative and implemented as an on-orbit commercial space venture.